Supervised Learning of Photovoltaic Power Plant Output Prediction Models
نویسندگان
چکیده
This article presents an application of evolutionary fuzzy rules to the modeling and prediction of power output of a real-world Photovoltaic Power Plant (PVPP). The method is compared to artificial neural networks and support vector regression that were also used to build predictors in order to analyse a time-series like data describing the production of the PVPP. The models of the PVPP are created using different supervised machine learning methods in order to forecast the short-term output of the power plant and compare the accuracy of the prediction.
منابع مشابه
Three Dimensional Transient Numerical Modeling of Temperature Distribution and Output Power in Photovoltaic Module
According to the effect of temperature on the output power of a photovoltaic module, this research tries to calculate the temperature distribution in a photovoltaic module by numerical solving of the energy balance equations. Therefore, its output power can be accurately predicted. For this purpose, several photovoltaic modules are modeled in detail in the COMSOL software. A new method for calc...
متن کاملA Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks
The power prediction for photovoltaic (PV) power plants has significant importance for their grid connection. Due to PV power’s periodicity and non-stationary characteristics, traditional power prediction methods based on linear or time series models are no longer applicable. This paper presents a method combining the advantages of the wavelet decomposition (WD) and artificial neural network (A...
متن کاملPhotovoltaic power plant power output prediction using fuzzy rules
Photovoltaic Power Plants (PVPP) are classified as a power energy sources with non-stabile supply of electric energy. It is necessary to back up power energy from PVPP for stabile electric network operation. We can set an optimal value of back up power energy with using variety of prediction models and methods for PVPP Power output prediction. Fuzzy classifiers and fuzzy rules can be informally...
متن کاملInterval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran
This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...
متن کاملReal-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems
This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power f...
متن کامل